skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arya, Shreya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Gromov–Wasserstein distance—a generalization of the usual Wasserstein distance—permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov–Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov–Wasserstein distance, we determine the precise value of a certain variant of the Gromov–Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}^{\infty }$$ { d GW p , q } p , q = 1 of Gromov–Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameterspandqand the metric of the underlying spaces, we are able to determine the exact value of the distance$$d_{{{\text {GW}}}4,2}$$ d GW 4 , 2 between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure. 
    more » « less